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Particle Loading for a Plasma Shear Layer in a Magnetic Field
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Some new particie loading methods have been developed for use in
simulating a plasma shear layer with nonuniform density and tem-
perature in the presence of a magnetic field, especially with a large
effective ion gyroradius. The numerical approach to the shear instability
with strong velocity shear consists of starting a simulation from a state
of equilibrium, perturbing this equilibrium in some way, then observing
the linear growth of the perturbation and its ultimate satuwration, With
the usual particle loading methad, it is difficult to reproduce the equi-
librium state if the ion gyroradius is not small on the scate of the shear.
The reason is that, with nenuniform velocity shear, i.e., with the non-
unifarm E-field, a particle may have more than one guiding-center, the
particle distribution cannot be obtained analytically, and it may need
to he evaluated numerically. {f an equilibrium state is not achieved in
the particle loading, the shear may relax by means of an “artificial
instability” in the course of the simulation, obscuring the physics of
interest. With the particle loading method here presented, we simulate
a shear layer in a state close to equilibrium without having to solve the
Viasov-Boltzmann equation.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Recent developments in supercomputers and in the
techniques of particle simulation have made possible more
realistic numerical experiments on nonuniform plasmas.
However, a satisfactory method for loading particles so as
to simulate magnetized plasmas with a large effective ion
gyroradius and with strong velocity shear had not pre-
viously been found, despite the interest in plasma flow
across a magnetic field. The general configuration that we
are considering is shown in Fig. 1. The presence of velocity
shear across @ magnoetic ficld corresponds to the E-field as
indicated in the figure.

The velocity shears in a magnetic ficld usually give risc to
the low-{requency diocotron instability [1-4] or, in the
long-wavelength case, to the so-called Kelvin—-Helmholtz
{K-H) instability [5-10]. Such velocity shears occur in
many areas of plasma physics, for instance: plasma heating
in Tokamaks by injecting an intense plasma beam; the inter-
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action of the solar wind with planetary magnetospheres; the
behavior of field-aligned plasma flows; plasma beam
propagation in the ionosphere; and the influence of the
Space Shuttle environment on active space experiments
[11].

In connection with the K-H instability, shear flows
have been extensively studied in ncutral fluids and also
in magnctoplasmas under conditions where magneto-
hydrodynamic {MHD) theory applies [10]. In space
plasmas, MHD theory is valid only so long as the spatial
scale of the shear is much greater than any of the
microscopic lengths characterizing the plasma, such as the
Debye length or the electron and ion gyroradii. Otherwise
it is essential to use kinetic theory in some {orm, such as
particle simulation.

The general configuration that we consider is shown in
Fig. 1. The presence of the E-ficld corresponding to the
sheared flow implies a nonuniform charge density through
the shear layer. In this configuration, Pritchett and Coroniti
[77 understood the importance of the kinetic equilibria and
first tried to start the simulations for the K—H instability
in equilibrium by solving the first-order Vlasov equation.
They performed the two-dimensional electrostatic particle
simulations in a magnetized plasma with an assumed
smooth velocity profile and with a large effective ion
gyroradius, trying to start them in equilibrium. They used a
[irst-order correction to the Vlasov equation to generalte a
consistent ion distribution with which to start their simula-
tions. They reported [6, 7] that the initial drift profile of
the plasma flow relaxed within one gyroperiod, if the jon
gyroradius was an appreciable fraction of the spatial scale
of the clectric ficld, which means that their first-order
correction to the Viasov equation does not treat this case
adequately. As a result, they obtained much smaller growth
rate of the instability in their simulations, compared with
the growth rate predicted by the linear cold-plasma theory.

Nishikawa et al. [8] used a piece-wise linear approxima-
tion instead of a smooth shear profile for their initial
loading. They performed the simulations in the weak shear
limit |V (x)/Q.| <1, where V' (x) is the gradient of the
E x B drift velocity (V {x)) and _, is the ion gyrofrequency.
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FIG. 1. Schematic diagram of a plasma shear layer at the interface
between two moving plasmas in a uniform magnetic field By perpendicular
to the direction of motion.

However, no plasma simulations have been done by
starting the simulation in equilibrium to see the linear
growth of the instability and its proper saturation in a
strong shear case with a large effective ion gyroradius, ic,,
when |V (x)/Q,.121 and p,/4x 205, where p, is the ion
gyroradius and 4x is the scale of the shear. Here the effect
of the finite 1on gyroradius becomes very important and
must be taken carefuily into account. Many space plasma
physics problems involve strong shears; examples are
the interactions of the solar wind with planetary
magnetospheres and the dynamics of artificial plasma
clouds created by active experiments on the Space Shuttle.

Of course, there are many other simulation works where
the kinetic aspects of the K—H instability are considered.
However, in many of them the simulations are not started in
equilibrium, and they are different from our work discussed
in the present paper. The differences will be discussed in
Section 2B.

The main difficulty in specilying the initial conditions of
a plasma with a velocity shear in a magnetic field is that of
obtaining the distribution functions of all particie species at
an arbitrary point in phase space [12]. The distribution
function of a particle is not determined uniquely by the
guiding-center of particle, because it may have more than
one guiding-center if its gyroradius is not small compared
with the spatial scale of the electric field; indeed, a particle
can have as many as three guiding-centers if its gyroradius
is large enough [12]. Please note here that we define a
guiding-center as a point at which v, — ¥V, =0, where v, is
the y-component of the particle velocity and V', isthe Ex B
drift velocity at that point. In the present paper, when the
“drift speed” is referred, the E x B velocity is always referred.
This is not the same “drift velocity” as the one referred to by

this name in the MHD theory, which is defined as the
momentum density of the plasma (i.e., the momentum per
unit volume) and is almost exactly equal to the local
ensemble average velocity of the ions.

As shown in Fig. 1, in our study of the kinetic K-H
instability we have limited our attention to its clectrostatic
limit in the case where the magnetic field is uniform and
perpendicular to the velocity of the sheared flow. The
main objective of our paper is to present some methods for
loading particles into a simulated plasma shear layer
in equilibrium with a magnetic field present, when the
gyroradius is comparable with the scale of the shear or more
than the scale of the shear.

2. PREVIOUS WORKS

A. Particle Loading

For a usual particle loading with a spatially uniform
plasma with isotropic Maxwellian distribution, it is very
common to do the cumulative distribution function solving
[13].

For a particle loading with a magnetized and nonuniform
plasma without a drift velocity, the difficulty in specifying
the initial conditions is discussed by Naitou et al. [14] and
Birdsall and Langdon [13]. Please note that in the present
paper when the “drift speed” is referred, the E x B velocity
is referred.

Following the desired equilibrium state, usually only
guiding-center positions and velocities can be assigned to
the simulation particles. After the particles are loaded in the
guiding-center, the actual positions of the particles are
determined. However, the resultant actual density #(x) is
generally different from the given guiding-center density
N(x) if N(x) is spatially nonuniform and the gyroradius is
not small compared with the spatial scale of the nonunifor-
mity. Thus, a charge separation occurs for the actual
densities due to the difference between the ion and clectron
gyroradius, when the charge neutrality condition g, N, {x)=
g;N,(x)}for the guiding-center densities is required, where ¢,
and g, are the electron and ion charges, respectively. N,
and N, are the guiding-center electron and ion densities,
respectively.

Using the Fourier method, Naitou et al. [14] discussed
two ways to avoid the unwanted charge separation: (1)
obtain the guiding-center ion density N, (x) so that the equi-
librium distribution of the actual ion density »,(x) satisfies
n{xy=n,(x}, where the equilibrium distribution of the
actual electron density n.(x) ~ N,(x) due to small electron
gyroradius; and (2} choose the electron density n.{x)=
7,(x) assuming n,(x) =~ N,(x).

Next, we need to load the particles in the velocity space.
Without velocity shear, ie., without an external E-field, a
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well-know equilibrium distribution in a magnetic fleld is
given by

m 3/2
flx, v} =N(x+0,/Q) {m}

mu?
s G

where v ={v|, and m, £, N(x), and T(x) are the mass, the
gyrofrequency, the density at the guiding-center, and the
temperature at the guiding-center, respectively. The dis-
tribution f{x, v) is the Maxwellian form and the particle
loading in velocities is well known [13].

Using the cumulative distribution function, Birdsall and
Langdon [13] discussed a similar particle loading method
in a magnetic field with a given guiding-center spatial dis-
tribution N,(x)=1+ 4, cos ko(x +v,/82,,), where £, is the
ion gyrofrequency, and A, and k, are the chosen factors,
They assumed electrons are cold and set the electron density
to be n,(x} = n,(x) so that there are no unwanted potentials
due to the charge separation.

With velocity shear that corresponds to an external
E-field across a magnetic field, the problem becomes much
more complicated than without it. The difficulty of obtain-
ing the equilibrium particle distribution are discussed in our
previous paper [12]. The equilibrium particle distribution
f(x, v)is no longer the Maxwellian form expressed in (1). As
discussed in our previous paper, the equilibrium distribu-
tion f(x, ¥) is in the form of a double integral and needs to
be solved numerically. Even if the guiding-center particle
density N(x)is uniform, the actual resultant particle density
n{x) is different from N(x) as shown in our previous paper
[12]. The particle loading cannot be done so casily as
Naitou et a/. [14] and Birdsall and Langdon [ 13] did, since
the equilibrium particle distribution is no longer in the
well-known Maxwellian form expressed in (1).

Therefore, in this paper, some new practice loading
method will be discussed in Sections 3 and 4 to start a
particle simulation in equilibrium with a large effective ion
gyroradius. Our loading method will be developed so that
we can avoid both the relaxation of the shear by the
improper loading [6-8 ] and the unphysical potential due to
the charge separation [ 13, 14].

B. Particle Simulations

There are many previous simulation works where both
fluid and kinetic aspects of the K-H instability are
considered [6-9, 15-18]. However, not so many particle
simulations for the K—H instability are properly started in
equilibrium after obtaining the equilibrium distribution of
the particie by selving the Viasov equation in some ways.

Pritchett and Coroniti [7] first tried to start the simula-

tion with smooth velocity shear in equilibrium by solving
the first-order Vlasov equation. The work by Ganguli et al.
['18] came after this. They solved the Vlasov eguation and
obtained the kinetic equilibria for a small &, where e = p;/4x.
Nishikawa et al. [8] used the kinetic equilibria obtained by
Ganguli er ¢f. [18] tried to start the simulation in equi-
librium. However, their simulation is only good for ¢ < 1. In
Sections 3 and 4, a new particle loading method that is good
for an arbitrary ¢ will be discussed.

Except for the above three works, there are many other
previous simulation works for the K~H instability, where
the simulation is not started in equilibrium. For example,
there are previous works by Wagner et al [17] and
Theilhaber and Birdsall [15, 16]. They used the artificial
macroscopic plasma flow described in Section 2A to
generate velocity shear across a magnetic field.

Theilhaber and Birdsall [ 15, 16] performed a two-dimen-
sional electrostatic particle simulation of plasma-wall
sheath to model the plasma behavior in the vicinity of the
Nimiters and walls of magnetized devices. This is done by
adding a wall which absorbs all incoming particles and
emits none in one side of the boundary of the system and by
creating electron—ion pairs spatially at random at each time
step.

The electron and ion in each pair are initially created on
top of each other, which means N.(x)= N,(x), and are
given the random Maxwellian velocity. Since the wall exists,
the resulting density n.(x)# n,(x), and the large charge
scparation in the system occurs. This is the special case of
the charge separation discussed by Naitou et al. [14]. Then
the charge separation in the system generates a plasma
shear sheath across a magnetic field and the system becomes
unstabie. The instability is the kinetic K-H instability.

Theithaber and Birdsall [15] concluded that the linear
fluid theory (small gyroradius, if any) correctly predicted
the growth rates of the long-wavelength modes. However, as
shown in Fig. 11 of their paper [ 15], at short- wavelengths,
both the maximum growth of the instability and the most
unstable wavelength are reduced significantly to half those
predicted by the linear fluid theory. Theilhaber and Birdsall
interpreted this difference as due to the finite gyroradius
stabilization.

Theilhaber and Birdsall [15] started the simulation with
a dramatic sheath formation, with a rapid drop in the
plasma potential and formation of the large E-field and
large shear at the edge of the simulation domain, which were
discussed by Naitou er al. [ 14]. However, Theilhaber and
Birdsall solved the linear fluid equation numerically from
random-noise initial conditions. Then they measured the
growth rate of the mode that emerges out of the noises. In
Sections 3 and 4, we will discuss the particle loading
methods which enable the simulations to be started from a
state of equilibrium.

In Wagner et al. [17], the electron sheet was given a finite
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thickness in the system by loading the guiding-center elec-
trons evenly across the system. Thermal ions were loaded
with their guiding-centers on top of the elecirons initially
with Maxwellian. As discussed in Naitou et al. [14], the
configuration like Wagner ef al. {17] had a step function-
type nonuniform density distribution across the system and
caused a large charge separation that generated a macro-
scopic plasma flow in the simulation system. As indicated in
Theilhaber and Birdsalil [15, 16], it took long time (70082,.,)
to reach the equilibrium state using such a particie loading.
Such a simulation made by Wagner et a/. [17] also expected
to have a large oscillation in the system [4, 19] and this
might cause the aurora arc deformation in their paper [17].
Also this simulation was not started in equilibrium,

3. THEQRY

Our numerical approach to the K-H instability in the
presence of strong shear consists of starting a simulation
from a state of equilibrium, perturbing this equilibrium in
some way, observing the linear growth and ultimate satura-
tion of the perturbation, and finally determining the charac-
teristics of the perturbation field in the saturated state
for comparison with the results obtained from the MHD
theory.,

However, an essential preliminary is the determination of
a plausible initial equilibrium state for the unstable plasma.
In space plasmas, it is reasonable to assume that the plasma
is collisionless, because the mean free path of the particles is
usually much larger than the anticipated thickness of the
shear layer. Then the equilibrivm structure of the layer can
be determined as a self-consistent solution of the Vlasoy
equations for the electrons and ions and of the Poisson’s
equation for the electric field.

The general configuration that we consider in our
investigation of unstable shear flow is indicated in Fig. 1.
In the present paper, we have restricted our attention to
the case where the magnetic ficld is oriented exactly per-
pendicular to the flow velocity: B, = 8,7 To make the
problem soluble, it has been simplified by assuming that the
shear layer is plane, that all properties of the plasma depend
only on the position along an axis (x) perpendicular to
the layer, that the magnetic field (B,) is uniform and in the
plane of the layer, and that the drift velocity (V) of the
plasma is everywhere perpendicular to the magnetic field
(see the basic coordinate axes in Fig. 1); granted these
assumptions, we assume a one-dimensional symmetry for
our particle loading. The profile of the E x B drift velocity
I, (in the y-direction ) versus the position has been given the
simple form of a hyperbolic tangent: ¥, = v, tanh{x/4x),
where dx is a measure of the thickness of the shear layer.
This is also the profile of the electric polarization field
(E.= — E,tanh(x/4x)), which is perpendicular to the

plane of the layer. The characteristic length over which the
change in the velocity occurs is 4x.

The most important theoretical task is to determine how
to start the simulation in the equilibrium state. If the simula-
tion does not start from equilibrium, the shear will relax
immediately and, in so doing, will mask the important
physics. Accordingly a theoretical study of the self-consis-
tent equilibrium of a shear layer in a magnetoplasma was
undertaken, and a solution has been found that satisfies the
governing equations, together with all the assumptions
[12]. The solution is analytic, but it is expressed in terms of
double integrals that, in general, have to be evaluated
numerically. Qur initialization process is based on this
analytic theory.

QOur goal of the simulation of the K—-H instability is to
start it from an equilibrium state in two dimensions with an
arbitrary length of gyroradius p;, which can be nearly equal
to or larger than the thickness of the shear layer 4x. The
procedure consists of loading the plasma particles into the
simulation domain in a way that is statistically consistent
with the analytic solution described in [12]. The two-
dimensional simulations will be performed in Section 6.
However, for our particle loading, we use the one-
dimensional symmetry in this section.

We define dx, as a small interval of distance in the x-
direction. Hereafier we define x, as the coordinate of a point
where particles are loaded. A number of particles (ions)
equal 1o N{x,) éx, per unit distance in the y-direction and
unit distance in the z-direction is loaded into the x-positions
between the limits x, — 6x,/2 and x, +dx,/2. Thus N(x,) is
the number of particles per unit volume loaded very near to
x,; this quantity is supposed to be a known function of x.
At a given point x,, the particles are loaded with their
x-components of velocity having the probability density
function

m . [_ mui(x,) ]
KT(x,) vilxg) exp 2KT(x,) |’

if vx)>0;
0, otherwise,

plodx,)]= (2)

where & is the Boltzmann constant. Equation (2) is a
Rayileigh distribution (see, for instance, Bracewell [20]).
The y-component of velocity is set equal to V,(x,), the local
value of the E x B drift velocity. If the electric tield as well as
the magnetic field were uniform, then, in a frame moving
with the drift velecity, the probability distribution of the
particle velocity v(=(v,,v,}) would be Maxwellian (see
Appendix).

At the point x = x,, the total number of particles with
their guiding-centers in the range from x,—dx,/2 to
x,+0x,./2 and with their x-component of velocity in the
range from v, —dv /2 to v, + dv, /2 is

N(x,) plv.(x,)] ov, 6x,. (3)
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Here we define a guiding-center as a point at which
v,— ¥,=0, where v, is the y-component of the particle
velocity and ¥, is the E x B dnift velocity at that point. Thus
we can specify the initial positions and velocities of the par-
ticles statistically by giving the temperature (7(x,)) and the
particle density (N(x,)) at x,. Defining the thermal velocity

v, =~/ kT/m, (4)

at x,, a Rayleigh distribution is easily generated by the
algorithm

vx.)=1v,/—2InR, (5)

where R is a random number uniformiy distributed between
Oand 1 [13].

We shouid note here that, loading the particle in the way
described above and defining a guiding-center as a point at
which v, — V' =0, the particle has a guiding-center at x,.
However, with the nonuniform £-field, x, is just one of the
guiding-centers for the particle, and the particle may have
other guiding-centers as shifting from x, [12].

4. APPLICATION

A. fon Loading

Now we know how to load the particles (ions) at x,
which is the loading point. Next, we need to obtain the
particle distribution at an arbitrary point x by shifting the
loaded particles from x, to x under the influence of the
polarization electric field, which is fixed. As shown in Fig. 2,
first we load a single particle at x, with velocity components
v.(x,) picked from a random Rayleigh distribution and
v,{(x,) which is equal to the local E x B drift velocity ¥, (x,).
Then we begin to advance it for a randem fraction of its
orbital period under the influence of the non-uniform
electric field, which 1s fixed.

In the time-stationary situation that we have been con-
sidering, all the particles are on orbits for which the varia-
tion of the x-coordinate with time is periodic, and we need
to know their periods so as to be able to advance the par-
ticle for a random fraction of its orbit. The period of orbital
gyration, or gyroperiod, of a particle would be independent
of velocity if there were no electric field present, but in the
presence of such a field it depends on the velocity, in
general: let us call it [ x,, v.(x,)]. The gyroperiod r equals
2 j’fj{’ml?; dx/v.(x), but this integral involves singularities and
takes a long time to evaluate numericalty. Therefore, we
prefer to obtain T by simulating the motion of the particle,
as follows: we load a single particle as mentioned in Sec-
tion 3; we advance it along its orbit using the Buneman—
Boris push [13]; we stop as soon as it has completed
one gyration, and note the time taken. To obtain the
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FIG. 2. Guiding-center location. Schematic diagram of our particle
loading. A particle is loaded at the loading point x, and advanced by the
Buneman-Boris push.

gyroperiod, the time step 47 is chosen to be w, 41 <0.1 and
w, 41 <02, where w, is the plasma frequency and w. is the
gyrofrequency. In Section 6, we will perform two-dimen-
sional simulations for the K—H instability, where we use the
typical time step w,, At < 0.25. Thus, the time step should
be small enough to obtain the gyroperiod of the orbit,
In order to obtain a more accurate gyroperiod of the orbit,
we use the linear interpolation between t=nr At and
t=(n—1) 4dt, where t=n Ar is the time just passed one
gyration and r=(n—1) Ar is the time just before one
gyration as shown in Fig. 2. By these means, which are
illustrated in Fig. 2, we obtain the gyroperiod t(x,)} of the
particle relatively rapidly and accurately.

Using the obtained gyroperiod, now we can determing
the random fraction of one orbital period by multiplying
this period by a random number ranging from zero to one.
Then we advance the particle again for a random fraction
of one orbit. In reality, we do not advance the particie
again. We use the phase space trajectory data, which were
calculated before to obtain 7, to advance the particle.
The random fraction of one orbital period is also linearly
interpolated between the two nearest points to the random
fraction in the phase space obtained before, so that we can
obtain the better particle distribution.

One more important point we have to be careful about in
our particle loading at x, is that, before we start to advance
the particle, the initial conditions for the particle velocities
at +=0 must be changed to fit in with the leap-frog time
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scheme that is used in the Buneman—Boris push. We need to
push v(0) back to v(— A4t/2) using the force calculated at
t =0. Thus v( —At/2) is shown as

v —dt/2) =v (0) cos(82,; 41/2),

v{—dt/2y= —v,(0}sin(Q, 41/2)+ V (x,). ©

After we load a single particle (ion) into the simulation
domain, we need to repeat the same procedure and load all
the rest of the particles into the simulation domain. The
overall ion loading process can be explained as follows: (1)
load a single particle at x, and advance it for a random frac-
tion of one orbit; (2) repeat the process (1) with uniformly
varying x but counstant y as shown in Fig, 3; (3) repeat the
process (2) with uniformly varying y.

In our loading of Fig. 3, the particles are free to go out
beyond the boundaries of our simulation domain. Before
starting the particle simulation, we show the initial phase
space plot of our particle loading in Fig. 4a. Figure 4a is the
initial phase space plot of x —v¢, when p/dx=1 and
0o/, Ax = 1. Because the particles can go freely out from
the boundaries in the x-direction and no particles come into
the simulation domain from beyond the boundaries, asym-
metry in the phase space exists at the boundaries of the
simulation domain as indicated in Fig. 4a. Therefore, we
need to re-inject the particles which go out from the bound-
aries to eliminate the asymmetry in the phase space shown
in Fig. 4a before starting the simulation. Provided that the
variation of the polarization electric field is flat enough near
the boundaries in x as shown in Fig. 1, we use the inversion

X AXIS

FIG. 3. Particle trajectories for inttialization,

vofdx 2 ,=1,and p,/dx=1.

typical dx=1,

4

vy
)

FIG. 4. Phase space plots for our particle lpadings: (a) is the initial
phase space plot of x — v, when p,/4x = |; (b} is the initial phase space plot
of x — v, when p;/4x =1 with the inversion symmetry at x = +64.

symmetry [13] to re-inject the particles which go out frem
the boundary as shown in Fig. 5. Of course, the loadings
are purely one-dimensional and we reserve only x at the
boundaries, v, at 0, and v, at v, in the figure. The origin 0
in Fig. 5 denotes the boundary in x. The result is shown in
Fig. 4b.

B. Electron Loading

An electron loading is much simpier than ion loading
due to its small gyroradius. It is possible for us to use an
analytical result developed in our previous report [12] to
load electrons.

As discussed in Section 2, without the polarization elec-
tric field, the distribution of particle velocity can be simply
expressed by the form of (m/2nkT)>* exp(— 3mv*/kT).
From our previous paper [12], with a linear polarization
field the distribution of the particle velocity still can be
expressed by the form of (m/2rnkT')*? exp(— smv*/kT"},
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but the temperature is modified to 7' = 7/, /1 4+ V', /2, and

1=V, /w, for ions and electrons, respectively, where
w,, i the electron gyrofrequency. T is the temperature of the
particle at the time when they are loaded and that subse-
quently, as the result of the influence of the electric field,
their temperature becomes altered to 7. The modified tem-
perature 7" indicates that a positive V', leads to a decrease
(increase) in ion (electron)} temperature and a negative V7,
leads to an increase (decreasc) in ion (electron) tem-
perature. Ions (electrons) run away and cannot exist at the
loading point when V', /Q < —1 (V,/w_, 2 1). In addition,
with a linear electric field, the actual electron density
n(x)=N.x,), where N, (x,) is the guiding-center electron
density [12].

Usually the electron gyroradius is much smaller than the
spatial scale of the shear (in our simulation we typically use
the mass ratio M;/m, = 16-128). We assume that the elec-
tron gyroradius is small enough and the polarization elec-
tric field varies linearly in the vicinity of the electron loading
point. This assumption is fairly good if we use the first-order
particle weighting, or cloud-in-cell model (CIC) in the
particle simulation, since we use the electron gyroradius
close to one grid spacing 4 in our simulation. Thus we load
electrons at x with random velocities characterized by a
drifting Maxwellian with modified temperature 7'. Note
that the electron loading point is x, and not x,.

Boundary
[ B

O

Particle Trajectory

Particle p

\‘;
Particle p'

xg' /
...

ER—

Farticle Trajectory’

FIG. 5. Inversion symmetry, Schematic diagram of the inversion sym-
metry used at the boundaries in x for our loadings. We observe the particle
p in a frame moving with v, =¢,. The particle has inversion symmetry at
x=0=y, where the origin zero denotes the boundary in x. A particle p
going out of the boundary will be re-injected as p’ at the boundary with its
velocities v, and », reversed at zero and v, respectively.

C. Summary of Particle Loadings

The ion loading procedure is much more complicated
than the electron loading procedure as discussed above.
One reason {or this is that the ion velocity distribution can-
not be explicitly represented by the Maxwellian form due to
the large gyroradius. The other reason is that we ignore the
difference between the ensemble average particle density
and the guiding-center density for the electrons. Our
justification for doing this is that the electron gyroradius p,
is much smaller than the spatial scale of the shear 4x, and
the electric field is varying linearly in the vicinity of the elec-
tron loading point. Thus we load the ion at x,, one of its
orbital guiding-centers, with the Rayleigh velocity distribu-
tion and advance it for a random fraction of one orbital
period under the influence of the tangent hyperbolic electric
field as mentioned above.

To sum up, our overall loading procedure can be
described as follows: (1) assume a smooth profile for the
electric polarization field, hence for the E x B drift velocity;
{2} load the ions into the simulation domain with a uniform
distribution along the x-axis, which is perpendicular to the
plane of the shear layer; {3} give random initial velocities in
the positive x-direction with the Rayleigh distribution at the
desired temperature to the ions, while in the y-direction then
give the local E x B drift velocity; (4) advance each ion
along its trajectory, in the presence of the constant but non-
uniform electric field, for a random fraction of its orbital
period; (5) calculate the ensemble average ion density
profile n,(x) in the way described in our previous paper
[127; (6) calculate the net charge density p by the Poisson
equation from the electric field given in (1}; (7) calculate the
electron density n.(x) by subtracting p/le! from the ion
density #;; (8) load the electrons into the simulation domain
in such a way as to yield the required electron density
n,(x); {9) give the electrons random initial velocities with
the drifted Maxwellian at the modified temperature

T' =T/ /1-V,jo,,.

5. YERIFICATION

The problem now is how to check the correctness of our
particie loadings. This is not so simple as one might expect,
because in the particle simulation we are dealing with a
finite number of discrete particles instead of with con-
tinuous statistical quantities. First an electric field varying
linearly with x was used to check the algorithm, because in
this case an analytic expression can be obtained for the par-
ticle distribution as in [127]. The profile of electric field and
drift velocity is E{x)= —Eyx and V,(x)=vpyx, respec-
tively. Figure 6 shows the Maxwell distribution of the
particles injected from a single point. To obtain the data
graphed in this figure, several thousand (typically 2000)
positively charged particles were launched from the same
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FIG. 6. The Maxwell distribution of the positive particles injected from one point: (a) refers to a case without electric field, where p,/4x = 1; (b) refers
to a case with the linear electric field, where v, =03 and p./4x =1; (c) refers to a case with the linear electric field, where v = —03 and p,/dx = 1.

point on the x-axis, with their velocities chosen by the
method described in Section 3. Then they were advanced
along their trajectories using the Buneman—Boris push as
described in Section 4.

The figures show histograms of the distributions of the
final positions of the particles: the launch point, which is the
origin of x, is at the interface between bin 20 and bin 21. The
x-axis is divided into 40 finite intervals (bins) whose widths
are one-tenth of the ion gyroradius. Figure 6a refers to a
case with no electric field, and Figs. 6b and ¢ to cases with
an electric field linearly proportional to x; the field at each
point is directed towards the origin in b, and away from it

in ¢. According to the theory [12], the distributions should
be Gaussian in form. Moreover, the Gaussian distribution is
wider in the case with a diverging electric field as shown in
Fig. 6c, and narrower in the case with a converging electric
field as shown in Fig. 6b, than in the case with no field as
shown in Fig. 6a, as expected. The open squares in the
figures indicate the theoretical Gaussian distributions for
this experiment. The numerically simulated distributions
match the theoretical ones to within the statistical errors.
The next test is to check the ion density distribution. Even
if we load a uniform N,(x} (=1), the theory predicts that
the ion density should vary through the shear layer due to
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FIG. 7. Ion density distribution. Profiles of the simulated (the dotted

line} and the theoretical (the solid line) ion density distribution with the
hyperbolic tangent polarization electric field. In all cases, the guiding-
ceniter jon density is uniform. The dotted line is the simulated ion density
profile in an equilibrium plasma shear layer, where v,/ Ax=1 and
pfdx=2. The solid line is the theorctical ion density profile in an
equilibrium plasma shear layer, where v,/Q,, Ax=1 and p,/4x=2.

effects of the finite gyroradius, as was explained in our pre-
vious paper [ 12]: in fluid theory the ion density distribution
would be flat. The test should be made by determining the
density profile numerically, using our particle loading
method. Then this simulated profile can be compared with
the corresponding one calculated from our analytic theory
[12]. Since the initial partial distribution for a 2D simula-
tion has 1D symmetry, the test can be made by a simulation
in 1D rather than in 2D. However, for the real particle
simulation for the K~H instability, we use a 2D model in
Section 6.

In this particle simulation, since we are dealing with a
finite number of discrete particles instead of with con-
tinuous variables, the profile of ion density exhibits statisti-
cal fluctuations, and the sole way to reduce them to an
acceptable level is to average over many particles. For
mstance, for a shear layer with v,/4x 2,,=1 and p,/dx =2,
the theory predicts that there should be a hump in the ion
density of 2.7 % at the center of the layer. To see this smali
variation, we had to average over more than 10,600 par-
ticles for one spatial point. The results are given in Fig. 7,
where the dotted line shows the ion density distribution
from a numerical experiment using our particle loading
method, while the solid line shows the corresponding
theoretical distribution. There is approxitmate agreement,
inasmuch as each distribution has a peak at the origin

flanked by two smaller but somewhat wider troughs, and
the dimensions of these features are similar in the two lines;
the discrepancies are due to the remaining statistical
fluctuations.

6. SIMULATIONS

A. Model

To study the kinetic K-H instability we employ a 2D
simuiation model, in which the fields are functions of both
the x and the y coordinates. We restrict our study to the
electrostatic limit of the instability, in the case where the
magnetic field is uniform and perpendicular to the sheared
velocity flow. These simplifications allow us to use a 2D
electrostatic particle simulation code.

The main features of our simulations were as follows: they
were performed in a slab geometry in which the system was
bounded in the x-direction and periodic in the y-direction;
the exact particie dynamics were retained for both electrons
and ions; particles of both species were reflected at the
boundaries; the grid spacing 4 was typically chosen to be
equal to the Debye length A,; the field equations were
solved by the marching method [21] in the x-direction and
by the fast Hartley transform method in the y-direction.

In order to prevent the flows generated by the K-H
instability from reaching the boundaries, we place the latter
at x= + 12.8 Ax, where dx is the characteristic length over
which the change in the velocity occurs. The system size in
the x-direction (L) is 25.6 Ax. The characteristic iength Ax
is chosen to be 51, in our simulation. Hence the system size
in x is 1281 ;. All spatial units on the simulation plots shown
in Figs. 8 and 9 are in units of five Debye lengths and one
Debye length A, equals one grid spacing 4. In our simula-
tion, we need to choose a small value of the ion to electron
mass ratio M,/m,, because of the large system size and the
large number of particles that are needed for the simulation.
Typically we choose the mass ratio M, /m, to be 16-128 to
enable the simulation runs to be performed in a reasonable
time.

Since no kinetic theory of the K-H instability with a large
effective jon gyroradius exists, we use the cold-plasma
theory or the kinetic theory in the weak shear limits [2, 3,
7] to decide the most unstable mode of the instability. For
example, from Fig. 2 of Ref. [ 7] the nermalized wave num-
ber Ax k, for the most unstable mode it is approximately
0.5. In order to resolve the linear growth of the most
unstable mode in the K-H instability, the system size in
y{L,) is chosen to be 644, which is one wavelength for the
most unstable mode. With this system size no more than
one most unstable wave can grow and saturate. The average
particle density is taken to be nyi, =16, so that the total
number of particles in the simulation is of order of 260,000.

In each simulation the ions are loaded as mentioned in
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FIG. 8. Time history of the electrostatic potential for modes 1 and 2 in y at the center of the system in the simulation for the Experiments 1 and I,

Sections 3 and 4, while the electrons are loaded in such
a way that the difference between the ion and electron
densities yields a space charge corresponding, through
Poisson equation, to the assumed profile of the electric field.

B. Results

After loading the particles in equilibrium, we are then
able to follow the time evolution of the K-H instability.
Figure 8 shows the time evolution of the clectrostatic poten-
tial for the two longest wave modes in y at the center of the
system. Mode 1 has dimensionless wave number k Ax = 0.49
and mode 2 has k 4x =0.98. Thus mode 1 is nearly equal to
the most unstable wave mode predicted by the cold-plasma
theory. The parameters for Figs. 8a and b are p;/4x =0.28,
Ax=35ip, 0y/R.d4x=1, @, j0,=028, M,/m,=16,
(wp!/Q(.,-)z =4, and T, =T, (Experiment I). The parameters
for Figs. 8cand d are p,/4x =095, Ax=54,, v,/Q . Ax =1,
W@, =05, M;/im =16, (0,/R2,) =125 and T,=T,

(Experiment II). The parameters for both experiments are
listed in Table L.

It is apparent from the Figs. 8a and ¢ that the potentials
for mode 1 in both experiments grow from their initial states
exponentially during the linear stage of the instability and
then saturate. These modes show a rapid growth of the
K-H instability. For mode 2 and higher-order modes, on
the other hand, the growth is significantly reduced or
suppressed. From the exponential growth of the potentials
for mode 1 in the initial linear stage, we can determine
the growth rate of the instability. As shown in Table I, the
measured growth rates y/€2,, for both experiments are the
same and y/§2,,= 0.19 (note that the estimated uncertainty
in the determination of the growth rate is +0.02}, while the
cold-plasma theory predicts y/£2 ., =0.19 [7].

A uniform time series w,, t = 50, 100, 150, 200, 250, 300
are shown for Experiment Il in Figs. 9 and 10. The initial
equilibrium flow obtained by our loading method has no
initial perturbation at all so the instability grows from the
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FIG. 9. Evolution of the electrostatic potentials at es,, 1 = 50, 100, 150, 200, 250, and 300 for Experiment II.

numerical round-off errors. After the exponential growth,
the most unstable mode dominates in frames ¢ and [ of
Figs. 9 and 10. Figure 9 gives the contours of the elec-
trostatic potentials. In Fig. 10, we show the particle motion
in the x — y plane perpendicular to the magnetic field. In
Fig. 10, only those particles initially loaded to the left of
the V', (x) =0 symmetry line are darkened.

The interesting point here is the presence of a large island
structure in the contour plots of the electrostatic potentials
as shown in Fig. 9. The island structure in the potential
plots is a characteristic of the K-H instability. At the same
time the island is an indicator of the vortex flow produced
by the instability. From Fig. 10 we can more clearly see the
evolution of the vortices. We first see small tongues of
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TABLE1

Parameters for the Simulations

System size

Grid spacing ———————  Strength of shear Growth rate for Mode |
Experiment  p;jdx 4 L, L, Va2, Ax W00 T/T, M/jm, P82
I 0.28 A 128 128 1 0.28 1 16 ~019
I 0.95 Ap 64 64 1 0.5 1 16 ~{Q.19

581/107/1-7
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particies moving across the center line of the simulation
domain, Subsequently these tongues grow by combining
with the smail ones and finally they undergo E x B trapping
into one dominant large vortical motion in x — y plane.

One striking feature here is that the K—H instability still
grows even if the value of p,/4x is close to one or more than
one. Pritchett er al. [6, 7] identified their relaxation of the
shear as the finite gyroradius stabilization of the instability
when the value of p,/Ax was close to one or more than one.
The reason the relaxation occurs is that, in the particle load-
ing, they use the first-order correction to solve the Vlasov
gquation, assuming that the shear is small, and start the
simulation from a “non-equilibrium” state. If they increase
the gyroradius, the equilibrium state cannot be expressed by
the simple first-order correction of the distribution function
which they used in their simulation [6, 7].

One ¢vidence can be found from Fig, 3 of their paper [7].
The evidence is that belore the linear growth of the
instability there is a long initial transient period (400e,,),
which we do not observe in our simulation as shown in
Fig. & During the transient period, the particles that are not
loaded in equilibrium are going to adjust themselves to the
given electric field and the relaxation of the shear occurs
even if Pritchett et al. [6, 7] take the vaiue of p,/Ax less than
one. As listed in Table 1 of their paper [ 7], when Pritchett
et al. increase p,;/Ax close to one or more than one, the shear
relaxes and the instability is suppressed. In our simuiation,
even though we increase the value of p,/4x, for example,
taking p;/Ax = 1.0, the K-H instability is not suppressed
and we still observe the typical features of the K-H
instability so long as we load the particles in equilibrium.

7. DISCUSSION

The main theoretical contents of our loading method are
the relationships that we derive between the guiding-center
and the actual particle distributions, and between the
guiding-center and the actual densities. The derivations
assume one-dimensional symmetry and a known variation
of the electric field. It applies to the electrons as well as to
the ions.

As we discussed in Section 2, there are two ways to avoid
the unwanted charge separation [147]: (1) obtain the
guiding-center ion density N,{x) so that the actual resultant
ion density n;{x) satisfies n,(x)=n.(x}); and (2) choose
n,(x)=nr,(x), assuming n,x)= N,x). For our particle
loading described in the present paper, we used the latter
method.

For no better reason than simplicity, we also assume that
the guiding-center density for the ions is known and that it
has a given density. For example, we assumed a uniform
guiding-center ion density in Sections 4, 5, and 6. It is only

on this assumption that all our conclusions regarding the
non-uniform equilibrium distribution of ion density applies.

Of course, we can assume that the equilibrium distribu-
tion of the actual resultant ion density n;(x) is given and
obtain the guiding-center ion density N,(x). In this case, we
have to load the ions with a certain non-uniform distribu-
tion of guiding-center density N,(x), in such a way as to
achieve the required distribution of their actual resultant
particle density n,{x). For this purpose, we are obliged to
invert the relationship between N,;(x) and #,(x). Since this
relationship is linear, the inversion is perfectly feasible
numerically; it 1s a sparse matrix inversion.

In point of fact, we should be doing this for electrons. In
our particle loading method as it stands, we find n,(x) is
required to create the assumed electric field, and we should
then load the electrons with the N,(x) that is required to
yield the required n,(x) in the presence of the assumed field.
However, we assumed that #,(x) ~ N,(x). As discussed in
Sectien 4, in our particle simulation, we use the CIC model
which generates the linear electric field over one grid size.
In the linear electric field, n.(x)= N.(x), and the particle
distribution becomes the drifting Maxwellian with the
modified temperature [12]. Thus, we do not need to invert
the relationship between n,(x) and N;(x), so far as we
choose the electron gyroradius to be close to one grid size.
Indeed, we did so in our particle simulation.

APPENDIX: RELATION BETWEEN
THE RAYLEIGH AND MAXWELL
DISTRIBUTIONS

In this appendix, we show the relation between the
Rayleigh distribution and the Maxwell distribution, when
there is no polarization electric field. We demonstrate that
the particles loaded at the guiding-center x, with the
Rayleigh distribution will eventually develop the Maxwell
distribution at an arbitrary point x. The x-component of
particle velocity v, can be expressed as

v, =0, 8in(2nt/T,), (Al)
where T, is the gyroperiod of the particle, v, is the tangential
component of particle velocity, and v,=v,{x,). The time

derivative of v is
dv, 2nv 2\ 2w v\
B o ()=, J1—(Z). (A2
at T, cos(rg) T," (v) (42)

Thus we obtain the relation

1
dr ., 1+ (A3)

do,” 2m0, [T~ (0, /o)
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As shown in Fig 11, the particles between the limits
v, —dv /2 and v, +dv./2 spend their time for 2dt in one
gyroperiod. The probability of finding a particular particle
with its velocity in the interval do, is

2dt
p(x.\'lvl) de=—,
Tg
(Ad)
(ralv) == &
Pxslv; T, dv,

g “lx

From Egs. (A3) and (A4) the conditional probability
density function p(v,|v,) which is the probability density
of v, given v, can be expressed as

1 1

plolo)=— ———m—r,
T = (o fo,)
in —ov,<v.<v,. (A3)

Thus we have obtained the conditional probability density
function p(v,|v,). Using the total probability theorem we
obtain

P =] p(v.lv) plo,) do, (A6)

—

Substituting the Rayleigh distribution p(s,)={(m/kT)0v,
exp[ —mv?/2kT] and Eq. (AS5)into Eq. (A6),

R ey
o \kT a1 (0, /0,)? P| kT -

(A7)
Ve
“ v=vsin 281
TE
Vi
Y
dvy
L
g | . o
dr dt T T, o
FIG. 11. Schematic diagram of », versus 7.

What we bhave to show here is that the equation above is
the Maxwell distribution. Let x =v7/v2 and p=0v2m/2kT.
We rewrite p(v,) as

plo = 2 [ SxBLk)

~3r dx. (A8)

x—1

The integral in the above equation is known and p(v,) can
be written as

muv,

n
2nkT\[ﬁexP("”)
_m my?
“ Vet P\ )
This completes the proof. Thus p(v,) is proved to the
Maxwell distribution; p(v,) also can be proved to be the

Maxwell distribution using the same procedure mentioned
above.

plv,)=
(A9)
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